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1. Introduction

v Mixed Poisson processes play an important role in many branches of applied
probability, for instance in insurance mathematics and physics (see Albrecht
3 (1985) and Pfeifer (1986) for recent surveys). They belong to the class of
- elementary pure birth processes {N(t);t > 0} with standard transition

T probabilities
p(s,t) = B(N(t) =m [N(s) =n), 0<n<m, 0<s%t, (1)

y possessing right-continuous paths and positive and finite birth rates

1

) )\n(t) = 1lim 1_1' pn,n+l

(t,t+h), =n,t> O, (2)
L0

o

and all finite-dimensional marginals of the jump-time sequence {Tn; n>0}
are absolutely continuous with respect to. Lebesgue measure (see Pfeifer (1982)).

For such processes, the jump times form a Markov chain with transition

e e e

probabilities

¢ 1-F(t)
n
T >t |T [ =38) = —L 0 <s<t,n>1 (3)
n n-1 - = i
1 - Fn(s)

and initial distribution function FO where

X
1- Fn(x) = exp | - I A‘n(u) du [ , x>0, n>0 (4)
0

e

(the Fn are in fact all cumulative distribution functions), hence all Fn !

R A
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are absolutely continuous with densities fn (say), and the conditional

densities for the transition probabilities can be represented as

£ (s)
f (s |t) __n® », 0< t <s, n> 1, (5)
1-F(t)

Moreover, the birth rates coincide with the hazard rates

f (t)
)\n(t) =—X _ ae., n,t >O0. (6)
1- Fn(t) -

If especially {N(t); t> O} 1is a mixed Poisson process, then also

A (1) = an*le"‘t dG(x)/ J e 4a(x) , n,t >0, (7)
0 0

where G is the cdf of the mixing random variable A (say). In fact, Lundberg
(1940) has proved that such a representation characterizes the intensities

of a mixed Poisson process.

In terms of random variables, a mixed Poisson process behaves like a homogeneous

Poisson process with rate A given A= XA, from which it also follows that
A (t) = EC Al N(t) =n), mn,t>0. (8)

The following result completes some of Lundberg's (1940) results on the

asymptotic behaviour of the intensities for mixed Poisson processes.
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Lemma. Let {tn; n > 1} be a sequence of positive real numbers converging
to t > O such that | TP' -1 = o(n-l/B), n > © , Then, if 1/t is a point

of increase of G, we have

. _1
iim X n(n‘t,n) =T (9)
n -+
Proof. Let en >0 be chosen in such a way that n €n3 >0, n E:n2 > and
1
(-t—n - 1)/¢ n > O for n> « , From relation (7) it follows that
00 00
1 n n+l -nxt n n -nxt
)\n(ntn) =3 J e (xtn) e m dG(x) /J e (xtn) e n dG(x)
n
0 0
1+€ +£
1 ( n)/tn n 5 (l n)/tn n 2
~ I xtnexp(- 5(1—th) ) da(x) exp( - :2-(1-xtn) ) d&{x)
n
(1-€, )/t (1-€ )/t
~%— for n+ « , This proves the Lemma.
n

The above result is in general not true without further conditions on G as can
e.g. be seen by mixing distributions concentrated in a single point A > 0;
here )\n(t) = A  for all n and t, A being the only point of increase of G.
As an example, consider a Pollya—Lundberg process where A follows a gamma
distribution with mean y >0 and variance qu 2, o > 0. Here

Q;
P8 s w2, a0, (10)

1 +uo -

from which the validity of (9) can be seen explicitly, for all t> O.
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2. The martingale characterization

Let {ln( Tn_l); n> 1} denote the sequence of post-jump intensities.

In the light of (2), the post-jump intensities deseribe the transition behaviour
of the process immediately after a jump has occured. The following result

gives a characterization of mixed Poisson processes by a martingale property

of this sequence.

Theorem 1 Let { N(t); t > O} be an elementary pure birth process with intensities
{)\n(t); n,t >0} and jump times {Tn; n> 0} . Let for n> 1 denote A the

o-field generated by T T Then {N(t); t> 0} is a mixed Poisson process

O,-.., n*l.

iff the post-jump intensities {) n(T n >1} form a martingale with respect

n_l);

to {An;nil} .

Proof. Due to the Markov structure of jump times the martingale property of
the post-jump intensities is equivalent to

EA L (T) 1T 4 =t)= A (t) a.s. foralln >1 (11)

n+l n-1

which by (5) and (6) is in turn equivalent to

(o]
£ .. (s) £ (s) £ (t)
J n+l D e = D a.e. (12)
g 1Fa(s) 1-F (1) 1-F (%)
> saying that the density f‘n is differentiable a.e. with
L
el £ (%)
e £1(t) = -~ —2L " p(4)  gee. (13)
W n 1-F__.(¢) D
paghat n+l
R
b ‘-'.\
K or ivalentl
:&z‘: equivalently
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w‘-I; f (1) £'(t)
S £ log(1-F, (1) = - 2 — -2
T 1—Fn+1(t) fn(t)

_d
= Hlog fn(t) a.e. (14)

Integration of this last relation shows that there are constants c > 0 such

N5 that
)A
oy 1-Fn+l(t) = e fn(t), t> 0, (15)

Wy which in turn implies that fn is absolutely continuous and the recursive

formula
~': = - 1
S £ 4q(t) c £1(t) (16)

holds everywhere on [0,®) . By induction, we see that all derivatives of
. f exist on [0, ®) , and that for all n > 1,
n n-1 (n)
f(t)=(-1) 10 e f. (t), t >0. (17)
. n ~ k70 -
b k—O
o Since by assumption, the intensities (and hence all fn) are positive and

(™ finite, we have
w (-1)" fén)(t) >0, n,t> 0. (18)

:\ The density f,. thus is completely monotonic on [0,«) s, hence by Bernstein's

0

" (1928) theorem there is a bounded and non-decreasing right-continuous function
\‘

;.Q H such that

¥ [e2]

f(t) = [ @), 2 0. (19)
0
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o In fact, since fo is a density, we have that %-dH(x) = dG(x) is a probability
Aﬁ‘ measure from which it follows that
LN
Y 0
S¢S n-1
§i- £ (t) = T c an+le-Xt da(x)
| n __ k
')' k=0 0
¥ - (20)
e n-1 n -xt
) 1-F (t) = I c Jx e da(x), n,t >0.
Ry n k=0 X -
oV 0
-‘1;-.
-3
A Hence relation (7) is satisfied, saying that { N(t); t > 0} must be a mixed
484 Poisson process with mixing distribution dG(x).
'L'
Sod
-}5 Conversely, since every mixed Poisson process has intensities of the form
o

(7), it is easily seen that relation (12) holds, hence the post-jump

intensities possess the martingale property, which proves the theorem.

I .
AINOIRY R
iy l':'

o

AY It should be pointed out that since fO(O) < «© by our assumptions, the mixing
L random variable must be integrable with

5

E( &) = £,0). (21)
-.h_)

55!

L&i A simple application of the Martingale Convergence Theorem (see e.g. Billingsley

(1979)) then shows that the post-jump intensities converge a.s. to some

integrable random variable since also

3
= . . ,
2

;. flbt)fo(t) fé(t)
1- E( A (T.)) = | ———————— dt = |- £f.(t) dat = £.(0). (22)
1o 1-F_(t) £ (t) © 0

% 0 1 o o w
Sy
:3} The question now is what the possible limits of the post-jump intensities are.
N The following result gives &n answer to this.
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\:"\ Theorem 2. If A is the mixing random variable of the process, then the

LR -

oy post-jump intensities converge a.s. to A .

;:—j Proof. For any mixed Poisson process, we have (n+l )/Tn -+ A a.s. by the
'-t:-: strong law of large numbers, applied to the Poisson process with rate A,
A

i conditionally on A=) , and by the law of the iterated logarithm,

-~ L T,

e, AN _ -1/3 :

;::j | & n+l - l| = 0 = loglog n) = o(n ) a.,s. forn-+ . Since also A
hY) is a.s. concentrated on the points of increase of G, the cdf of A ,we have

by the above Lemma

e

X ep(T) = A ((a*d)(T /1)) ~ (n#1)/T > A a.s., (23)
_:-'_ which proves the theorem.

SN

For instance, if A is concencrated on two poiuts W <oV, with masso and
h}} l-q each (@ > 0), then
<1V ,V

Yo \)2’ t __1\ 1’ 2)

"h\"l =

X LV t 21V, V)

W

..'.'.\
‘:‘.i:: where 1( \)1,\)2) = (log\)2 - log vy )/(\)2 - \)l), as can be seen from Lundberg
h""‘ -

o (1940), relation (108). Since always 1/ Y, < I Vl’vZ) < 1/ Y it can explicitly
\\:"

. be seen that

‘.'[:";.'j v, with probability a
b
o A per(Ty) (25)

v, with probability 1l-a ,

.......
b
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.
b

= 2
o

.
e,

e
'..l _\J

o u

i.e. )

(Tn) + A a.s.

n+l
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